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On the basis of  linear and nonlinear approximations, a more accurate value of  the critical GSrtler number 

is f o u n d  and  the effect of  Taylor-GSrt ler  vortices on surface friction in the transverse direction is 

determined. 

It is well known [ 1, 2 ] that after loss of stability the boundary layer near a concave surface gives rise to 
the development of secondary flows in the form of a system of Taylor-G~Jrtler eddies with clockwise and 

counterclockwise rotations whose axes coincide with the direction of the main flow. G~rtler was the first to find, 

on the basis of an analytical approach, that the critical number G~icr was equal to 0.58 (GiJcr -- 16). Subsequently, 
on the basis of a linear approximation various researchers determined that the value of GiJcr varied from 0.32 to 

2.8 (Fig. 1). Such a wide range for G/Jcr results from insufficient incorporation of terms in the equations of motion 

and inadequate accuracy of their solution. 

As will be seen below, a linear approach provides a way to determine the local characteristics of a perturbing 

flow (the change of the coefficient of friction in the lateral direction), but does not permit one to predict the overall 

increase in the coefficient of friction due to the appearance of Taylor-GSrtler  vortices. An analysis of Schlichting's 

solution for flow near a vibrating cylinder [3 ] shows that this occurs due to the neglect of quadratic terms in the 
disturbing amplitudes. 

In the present work, on the basis of a linear approximation and allowance for virtually all of the terms in 

the equation of perturbing motion, we determined the most soundly based critical value for the GSrtler number 

and the effect of Taylor-G/Artier vortices on the surface friction by taking into account nonlinear effects (quadratic 

terms). 

Equations of Perturbing Motion (Linear Approximation). To perform a linear analysis, we use Taylor's 

relations [2 ] for the velocity and pressure components (the coefficient of growth of perturbations is considered 

equal to zero): 

u = -~ + u A cos (az) exp ( f  Tax) ; v = -~ + v A cos (az) exp ( f  ydx) ; 

w = w A sin (az) exp ( f  ~dx) ; P = P + PA cos (az) exp ( f  7dx) o 

Substituting these expressions into the equations of motion and neglecting in the first stage the quadratic terms in 

the amplitudes of the perturbing quantities, we obtain the equations of the perturbing motion 
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These equations permit one to determine in the most complete form the critical conditions for the occurrence of 

Taylor-GiSrtler vortices in both laminar and turbulent modes of flow under the effect of various factors such as 

pressure gradient (fA) and variable curvature of the surface along its length. Some other factors (injection, suction, 
external turbulence, etc.) are taken into account through the distribution of the averaged velocities ~, ~ and the 
effective viscosity, which is the sum of molecular and eddy viscosities. 

The system of equations (1) can also be written down in another form if we eliminate from it the pressure 

P~t and the component w~: 

. R~/~ * u* v* *1 Re ua R ~ ~  - ~ fA + VA Dn + Dn UA = 

[ = % # [ D D n _ ~ 2 1 u a  + l ) +  R w / d _ ~  UADVeg- -  
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The systems of equations (1) and (2) are more complete than those used earlier by other authors since they take 

into account the changes in the parameters (u*, Yell, Rw) along the longitudinal coordinate and also all the terms 
that characterize the curvature 6/Rw. 

GSrtler Critical Number. In order to determine the conditions for the occurrence of Taylor-GSrt ler  

vortices, an eigenvalue problem was solved for the systems of equations (1) and (2) in the absence of perturbing 

factors under conditions of the laminar mode of flow @eft-- 1). The problem was solved by the "shooting" method 

for system (2) and the finite-difference method for system (1) with zero boundary conditions. For the solution a 

polynomial profile was adopted for the averaged longitudinal velocity component [4 ]: 

u* = / '  (0 = F ( 0  + AG (~) + t$ A + 1 2  
R w 1 - cS/R w 

G(~) ,  (3) 
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where F(~) = 2~ - 2~ a + ~4; G(~) = ~(1 - ~)3/6. 

The transverse velocity component v* was determined from the continuity equation 

v* d 3  , c5 du~ 
= ~ x  (~f - f) uo~ dx /"  

Bearing in mind that for a laminar mode of flow the boundary layer thickness is defined as 

= rex~Re ~  ' 

we eliminate dcS/dx from the previous expression. This yields 

2 
- m . A 

v* - 2 R e  (~f' - f )  R--el" 

In the case of gradientless flow, which is considered in the present paper, the second term in the expression for 

v* is equal to zero. 

The values of the coefficient m in the formula for the boundary layer thickness are a function of the 

curvature 8/Rw.  To determine this function, we solved numerically the differential equations of a laminar boundary 

layer; in the range 8 / R w  = 0-0 .1  the coefficient m is correlated by the following equation: 

4.7 - 2.028 (8 /Rw)  0"415 at 6 / R  w = 0...0.03 
m = ' ( 4 )  

4.281 - 1.811 6 / R  w at 6 / R  w = 0.03.. .1. 

The solution of the eigenvalue problem by the finite-difference method made it possible to obtain the 

following equation for the critical Gi5 number 

22.7 for 8 / R  w <_ 0.02, 

GScr = 

27.76 ( R ~ )  0"0484 for 8 / R w > O . 0 2 . . . O . 1 .  

As is seen from this relation, starting from 6 / R  w = 0.02, the value of G~icr is a weak increasing function of the 

curvature, and at cS/Rw = 0.1 the value of Gi3cr exceeds the minimum value by 8% (for cS/Rw < 0.02). Converted 

values of Gi3** are presented in Fig. 1 for the case 6 / R w  <- 0.02. 
With the use of the "shooting" method, the value of Gi~cr depends on the upper boundary of the solution 

domain. If the upper boundary is the outer edge of the boundary layer, the GSer values obtained by the "shooting" 

method are 1 - 3  % lower than the Gocr values found by the finite-difference method. When the outer edge is at 

infinity, the Gocr value calculated by the "shooting" method is 7 - 1 0 %  lower than that calculated by the finite- 

difference method. 
The accuracy in determining the fulfillment of zero boundary conditions at the outer edge using the 

"shooting" method is lower than in the finite-difference method. Therefore, the data on Gi3cr obtained by the 

finite-difference method may be considered more soundly based. 

The few available experimental data on the neutral stability curve are presented in Fig. 1. These data are 

close to theoretical curves obtained in the present work and in the work of Aihara. 
Figure 2 shows values of the critical wave number corresponding to the appearance of vortices in a boundary 

layer. From this figure it is seen that calculations made in the present work are in best agreement with experimental 

data, thus bearing witness to the reliability of the results obtained. 

Perturbing Amplitudes and Surface Friction. Knowing the eigenvalues of the system of equations (1) or 

(2) made it possible to solve the equation of motion and obtain the distribution of the perturbing amplitudes. 
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Fig. 1. Stability diagram: 1-8)  calculation; 9-10)  experiment; 1) GSrtler; 2) 
Meksyn; 3) Aihara; 4) Kahawita; 5) Smith; 6) Herbert (cS**/Tw = 6.6 .10-6) ;  

7) Herbert  (c3**/Rw = 6.6.10-a; 8) results of the present investigation 
(cS/Rw <- 0.02); 9) Wortmann; 10) Bipps. 

Fig. 2. Critical wave number; 1, 2) experiment; 3 -6 )  calculation; 1) Tani; 2) 

[2 ]; 3) results of the present investigation; 4) GSrtler; 5) Herbert; 6) Smith. 

The solution showed that the profiles of the perturbing amplitudes of the longitudinal velocity component 
normalized to the value of u~, are self-similar functions of the Reynolds number provided that G5 --- idem. The 
profile of the longitudinal component of the perturbing amplitude of the velocity (in the region ~ -- 0 - 1 )  is defined 

by the equations 

( ~ )  = U A = 

0.7 Cl~ + (0.0258 - 0.007 Cl).104 ~2 when ~ --, 0 ,  

S l ~ e x p ( - / ~ ) - S  2~2 when ~=0 .01 . . . 1 .0 ,  
(5) 

where $I -- 2.66; b -- 3.0; $2 -- 0.1324; Cl = f " (0 )  is the coefficient in the linear term of polynomial (3). 
Profile (5) is in good agreement with the experimental data (Fig. 3). When the second term in Eq. (5) is 

neglected ($2 -- 0), the perturbing velocity decays at infinity, in agreement with the predicted profiles [2 ]. 

The other components of the perturbing amplitudes of the velocity are defined by the following equations: 

�9 1 S1 ~2 �9 S1 VA= Re e x p ( - b ~ ) ;  W a - ~ R e  ~ ( 2 - b ~ ) e x p ( - ~ ) "  (6) 

From these formulas it is seen that the component v.~ has negative values over the entire thickness of the boundary 

layer, while the component w.~ has positive values in the inner part of the boundary layer and changes its sign 
when ~ > 2/b. Moreover, in contrast to u~, these profiles are not self-similar with respect to the Reynolds number 

(and, consequently, to the GiJrtler number). 
Using distributions (3) and (5), we can find the coefficient of friction (Rex = idem) 

c s = % [1 + 0.7 cos (az) 1, (7) 

where Cfo is the coefficient of friction without allowance for the effect of Taylor-GSrtler vortices. 
As is seen from Eq. (7), the linear approximation makes it possible to predict a harmonic change in the 

coefficient at friction across the surface immersed in the flow. In this case the value of the surface friction, equal 

to the friction under irrotational flow conditions, is preserved on the average. As indicated above, this is expalined 

by neglect quadratic terms. 
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Fig. 3. Profiles of the longitudinal perturbed velocity: 1) calculated from Eq. 

(5); 2) calculated from Eq. (5) at $2 = 0; 3) experimental data of [1 ]; 4) 

experimental data of Yurchenko et al. 

Nonlinear Analysis. Next, let us analyze the differential equations of motion with account for the quadratic 

terms in perturbing amplitudes. Following the approach considered in [3 ], we substitute the first approximation of 

the velocity into the equation of motion. This yields terms that contain the factor cos (crz), which can be represented 
in the form of the sum 

z 1 
cos (crz) = -~ [1 + cos (2az)]. 

This equality indicates that the nonlinear terms are related to nonharmonic effects due to harmonic "causes" (the 

first term of this equation cos (0az) = 1) and nonlinear harmonic effects (the second term). Thus, the perturbing 

velocities caused by Taylor-G6rt ler  vortices should be sought in the following form 

U' = U A COS (CrZ) + UB1 COS (2crz) + uB2 ; 

v' = v A cos (az) + vB1 cos (2az) + vBz ; 

w' = w A sin (az) + WB1 sin (2az) + wg2.  (8) 

In this case the equation of motion for the perturbing quantitis with allowance for nonlinear terms will be written 

a s  

-- Od OU' OU ~ OU' V, OU OU' 02U ' u + u ' - - + u ' - - +  - - +  + v ' - - = v - -  (9) 
Ox Ox Ox Oy Oy Oy Oy 2 " 

Substituting Eq. (8) into Eq. (9) and then equating coefficients of cosines with identical arguments, we 

obtain equations for linear and nonlinear approximations. The coefficients of cos (az) refer to the linear 
approximation, which was considered above. Experimental data show [1, 2 ] that the coefficients of cos (2az) are 

small and can be neglected. Then, the equation consisting of the coefficients that take into account nonlinear terms 

has the form 
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1 OUA O-u _ OUB2 _ OUB2 O-u 1 OU A = O UB2 

"~ U A ~ + ttB2 ~ + U ~ + V ~ + VB2 ~ y  + 2 vA Oy V OY 2 
(lO) 

To solve Eq. (10), we use for ~ and ~ the Blasius distribution [1 ] 

**/B(ri); 

where ri = y uVu~/v x. 

The perturbation of the amplitude of u A and va can be determined from formulas (5) and (6) and that of 

UB2 and vB2 is prescribed by the following relations: 

UB2 ----" /,too ~ (ri) ; PB2 = -~ - ~  (ri if,)' -- ~P). 

Substituting ~, ~, UA, VA, UB 2, and VB2 into Eq. (10), we obtain 

d3~p + 1 d2~p + ri ~ _ ri + 
arl a 2 fB dri 2 2 dri dri 2 2 

= 

The right-hand side of this equation is proportional to exp (-2b~}, and therefore it is advisable to seek its solution 

in the form of the series 

-2/~j ~ i (11) ~ p = e  a i r  I . 
i=2 

This series begins with the value i -- 2, since it is necessary to satisfy the condition UB2 = 0. It is seen that due to 

the multiplier e -2b~', the quantities UB2 and PB2 decay much faster than UA and VA. 
t 

To solve the equation, we used the Galerkin method and represented the Blasius function fz(ri) in the form 

of a series. The solution gave the following values for the coefficients of series (9): 

2( ) (o))-1 1 S 1 2 
a 2 -  1+---~ ( 3 + / B  ; 

4 m m 

a3 = -3 m a2;  a4 = - 3 m a2 ; 

S 1 1 .f (0) b 
a s =  240 a2 5 15 m 3- 10 -4 . 

Using Eq. (11) with allowance for the expressions for the coefficient a2, we find the tangential shear stress 

on the wall taking account of the nonlinear effects: 

0.7 c 1 cos (t:rz) I 2 2 /m2)  / 
c f=C/o  1 +  + S 1 ( 1 +  

m f~ (0) 2 m f~ (0) (3 + fB (0)) 

i 

where fB = 0.332; m is determined from formula (4); cl is the first coefficient of polynomial (3). 

(12) 
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Fig. 4. Variation of the width-averaged coefficient of friction along concave 

surface: 1) Rw--  1.5; 2) 0.5. 

As an example, Fig. 4 presents the change in the relative (averaged over the coordinate z) coefficient of 

friction along a concave surface calculated from formula (12). The sharp increase in the coefficients of friction at 

the points a and b corresponds to the beginning of the appearance of Taylor-G6rt ler  vortices. It is evident that 

the influence of vortices on friction is very appreciable and attains 80 -85%.  However, this effect depends weakly 

on the surface curvature (6/Rw).  

N O T A T I O N  

x, y, z, Cartesian coordinates; u, v, w, components of the velocity vector in Cartesian coordinates; 6, 

boundary layer thickness; Rw, radius of the surface curvature; v, kinematic viscosity; p, density; a, wave number; 

= y/6;  ~ = crY, ~eff = Veff/v, effective viscosity taking into account molecular and turbulent components; D = didO, 

Dn = D - 1 / ( R w / ~ - ~ ) ,  differential operators; Re = u=6/v ,  Reynolds number; G~J = Re(6Rw) ~ G~irtler number; 

G/5**, G~irtler number based on the momentum loss thickness 6**; ~** = a6**; f = 6/uo~Ou/Ox, pressure gradient 

parameter; A = ~ 2 / v d u = / d x ,  Pohlhausen parameter; P~t = pA/ (pu~) ;  cf, coefficient of friction; Rex = u=x/v .  

Subscripts: ~,  outer edge of the boundary layer; A, linear perturbing amplitudes; BI, B2, nonlinear perturbing 

amplitudes; asterisk, dimensionless velocities referred to u~; cr, conditions for the appearance of vortices. 
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